

Providing Placental Blood to Babies at Birth: A network Quality Improvement Project

Heike Rabe

Kent, Surrey and Sussex Neonatal Operational Network 2018

Brighton & Sussex NHSUniversity Hospitals

Resuscitation versus Transfusion?

- Optimal timing for clamping of the umbilical cord at birth is under discussion.
- Early clamping allows for immediate resuscitation of the newborn.
- Delaying clamping or milking of the cord facilitates transfusion of blood between the placenta and the baby.

Postnatal Change of Circulation

- Placental circulation stops
- Fetal shunts should close
- PDA: Change to left-right shunt
- Capillary bed:dilated, resistance decreases

Blood pressure in the Transition Period

Figure 1. Currently suggested lower and upper limits for normal blood pressure in neonates [2].

Farrugia Future Cardiol 2013

Probability of Blood Transfusion in Infants

Brune T et al, 2002

Blood distribution

Immediate Cord Clamping

Enhanced Placental transfusion?

Improved Circulatory Adaptation: RCT 22-27 GA

Reported Benefits from Placental Transfusion Preterm Infants

- Higher circulating blood volume for 24-48 h
- Fewer blood transfusions
- Better systemic blood pressure
- Reduced need for inotropic support
- Increased blood flow in the superior vena cava
- Increased left ventricular output
- Reduced necrotizing enterocolitis
- Higher cerebral oxygenation index
- Lower frequency of any intracranial haemorrhage
- No adverse effects on neurodevelopmental outcome at 2 years
- Reduction in hospital deaths by 30%

Tarnow-Mordi 2017, Fogarty 2017, Ghavam Transfusion 2014, Rabe Cochrane R 2012

DCC vs ICC: 18 studies; n=2834 < 37 weeks Deaths

Fogarty AJOG 2017

DCC vs ICC: 3 studies; n=996 <= 28 weeks Deaths

	Delay	ed	Earl	У		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Backes 2016	2	18	4	22	4.4%	0.61 [0.13, 2.96]	
Duley 2016	6	46	10	39	13.1%	0.51 [0.20, 1.27]	
WTM APTS 2017	50	436	68	435	82.5%	0.73 [0.52, 1.03]	•
Total (95% CI)		500		496	100.0%	0.70 [0.51, 0.95]	•
Total events	58		82				
Heterogeneity: Chi ² =	0.57, df =	2 (P =	0.75); l2:	= 0%			0.005 0.1 1 10 200
Test for overall effect:	Z = 2.25	(P = 0.0)	02)				0.005 0.1 1 10 200 Favours delayed Favours early

Fogarty AJOG 2017

Jaundice requiring **Polycythemia requiring** intervention? intervention? Risks? **Delay in commencing Poorer temperature control Resuscitation?**

Jaundice requiring intervention?

Polycythemia requiring intervention?

Delay in commencing Resuscitation?

Poorer temperature control

Jaundice requiring intervention?

Polycythemia requiring intervention?

Delay in commencing Resuscitation?

Poorer temperature control

Jaundice requiring intervention?

Polycythemia requiring intervention?

Delay in commencing Resuscitation?

Poorer temperature control

Benefits of Delayed Cord Clamping for Term Babies McDonnell Cochrane Review 2013

Body Weight

↑ Heavier 60-100 g

Skin

- ↑ Cutaneous perfusion
- ↑ Peripheral temperature

Cardiovascular

- ↑ BP
- ↑ Cardiovascular stabilization
- ↑ RBC flow to brain (18%)
- ↑ RBC flow to gut (15-20%)

Respiratory

- ↑ Pulmonary vasodilatation
- ↑ RVO, pulmonary BV

Renal

- ↑ Renal blood flow
- ↑ Urine output
- ↓ Sodium excretion

Hematologic

- ↑ RCV, Hct, Hb
- ↓ Hypovolemia

Iron Stores

- ↑ Ferritin (4-6 months)
- ↑ Total Body Iron (6-12 months)

Brain

↑ Better Neurodevelopment Outcome at 4 years of age

Drying

Assess Baby

Skin to Skin

Oxytocin

Drying

Assess Baby

Skin to Skin

Oxytocin

Cut Cord

Drying

Assess Baby

Skin to Skin

Oxytocin

Cut Cord

Breastfeed

Immediate cord clamping reduces the risk of bleeding after birth?

So why do we clamp the cord immediately?

Immediate cord clamping reduce risk of bleeding a er birth?

So why do we clamp the cord immediately?

BSUH RCT: 4x Milking vs 30 sec Delay: Blood Pressure in Postnatal Adaptation

Blood pressure in first 120 h of life

Rabe et al Obstet Gynecol 2011; 117:205-211

RCT: 4x Milking vs 30 s Delay: Haemoglobin

Blood hemoglobin levels during the first 6 weeks of life

Meta-Analysis: Cord Milking (Al-Wassia JAMAPediatrics 2015)

-	OCM (лопр	Control	чичир	ı						
O2 at 36 w	No. of Events	Total	No. of Events	Total	Weight, %	Fixed M-H RR (95% CI)		Favors UCM	l F	avors Control	
Alan et al, 16 2014	2	19	3	19	12.9	0.67 (0.13-3.55)			-	_	
Hosono et al, ¹¹ 2008	0	18	4	17	19.8	0.11 (0.01-1.82)		_	+		
Katheria et al, ¹⁵ 2014	4	30	12	30	51.4	0.33 (0.12-0.92)		-	_		
Rabe et al, 14 2011	3	27	4	31	16.0	0.86 (0.21-3.51)	_		-	_	
Total	9	94	23	97	100.0	0.42 (0.21-0.83)	_	<	>		
Heterogeneity $x_3^2 = 2.41 (P = .49); I^2 = 0\%$											
Test for overall effect: $z = 2.50$ ($P = .01$)							0.005	0.1 Fixed M-	1.0 H RR	10 (95% CI)	200

IVH of all gradesa

	UCM Group		Control Group				
IVH all grades	No. of Events	Total	No. of Events	Total	Weight, %	Fixed M-H RR (95% CI)	Favors UCM Favors Control
Alan et al, ¹⁶ 2014	4	22	3	22	6.7	1.33 (0.34-5.28)	
Hosono et al, 11 2008	3	20	5	20	11.2	0.60 (0.17-2.18)	
Katheria et al, ¹⁵ 2014	8	30	11	30	24.6	0.73 (0.34-1.55)	
March et al, 12 2013	9	36	20	39	42.9	0.49 (0.26-0.93)	
Rabe et al, ¹⁴ 2011	3	27	7	31	14.6	0.49 (0.14-1.72)	
Total	27	135	46	142	100.0	0.62 (0.41-0.93)	
Heterogeneity $x_4^2 = 2.03 (P = .73); I^2 = 0\%$							

Cord Milking: Benefits and Risks

- Cord Milking provides placental transfusion:
 - higher initial hemoglobin
 - increased blood pressure
 - improved systemic blood flow
 - Improved urine output
- Cord Milking may be preferential in preterm babies delivered by C/S
- Cord Milking shows same benefits with regard to IVH
- Cord Milking is not reported to cause strokes or PVL
- Neurodevelopmental outcome similar

- T ell the team what you plan to do (Time Out)
- equest supplies (e.g., two warm sterile towels)
- A ssign roles (e.g., timekeeper)
- N ote time of birth
- S tart timer
- etal transfusion period (announce time every 15 sec)
- stim U late the baby
 - S top and clamp the cord
 - E valuate baby

KSS Quality Improvement Project

- Use of DCC or UCM in term and preterm babies
- Retrospective audit and survey about current practice
- Stepwise introduction
- Regular reviews
- Feedback about barriers
- Use of steppcard at deliveries?

Safety

S.T.E.P.P

card

START HERE

Situation checks

- Nurse in charge aware
- Senior Clinician aware
- Other Emergencies covered
- Team well-being

Think Problems

- Predicted difficulties?
- Help available and how to contact?

Date: 01/05/2018 Version 3. TMBU human factors team

<u> High Risk Delivery</u>

Equipment checks

Monitor

- · Saturation probe
- FtCO2
- Stethoscope

Resuscitaire

- Heater
- Neopuff/BVM
- Correct Mask size/type
- Suction device
- Oxygen/Air supply

Airway kit

- ETT (size +/-1)
- Laryngoscope
 - Bulb check
 - Blade size
- Stylet

Resuscitation Trolley

- Locate trolley
- · Identify drawers

Brighton and Sussex WHS University Hospitals

Trevor Mann

Prepare

Patient

- Gestation/Antenatal specific
 - Cord clamping delay/milking
- Temperature Control

People (allocate names to roles!)

- Team Leader
- Airway
- Assisting/Monitoring
- · Heart rate/Compressions
- Timing or Scribing

Plan & ongoing care

- Verbalise Plan A
- What is Plan B and C?
- Team agree to proceed?

Proceed

Please Safety Pause & update parents afterwards

GIVE A PLACENTAL TRANSFUSION TO ALL NEWBORN BABIES

CORD MILKING

(SLOWLY "STRIP" THE INTACT CORD X 4 TOWARDS BABY)

- BABY < 32 WEEKS
- BABY REQUIRING ADDITIONAL STABILISATION /

DELAYED CORD CLAMPING

DO NOT CLAMP THE CORD FOR 1 MINUTE

- BABY ≥ 32 WEEKS
- ABLE TO STABILISE / RESUSCITATE WITH INTACT CORD

DOCUMENT: TIME OF DELIVERY AND
CORD MILKED (number of strips) or TIME CORD CLAMPED

PLACENTAL TRANSFUSION:

- DOES NOT DELAY "RESUSCITATION" IT IS PART OF IT
- STABILISES THE VASCULAR CIRCULATION
- GIVES IRON, RED CELLS, STEM CELLS & OTHER FACTORS
- REDUCES MORTALITY AND MORBIDITY IN PRETERM BABY

RECIPIENT TWIN FROM TITS SHOULD NOT RECEIVE A PLACENTAL TRANSFLISION

Thank You

To all the Parents, Babies and Staff involved in this **Quality Improvement Project**

www.cordclamping.org/EXPLAIN

Let the Baby breathe Katheria 2016

