QUICK GUIDE: VOLUME GUARANTEE VENTILATION

<table>
<thead>
<tr>
<th>Prematurely Born Infants < 32<sup>0</sup> Weeks Gestation</th>
<th>Prematurely Born Infants ≥ 32<sup>0</sup> Weeks and Term Infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Set-up</td>
<td>Mode: SIMV + VG</td>
</tr>
<tr>
<td>• Mode: SIPPV + VG</td>
<td>• Mode: SIMV + VG</td>
</tr>
<tr>
<td>• Tidal volume: 4 - 5 ml/kg</td>
<td>• Tidal volume: 4 ml/kg</td>
</tr>
<tr>
<td>• Pmax (PIP limit): 25 cmH<sub>2</sub>O</td>
<td>• Pmax (PIP limit): 30 cmH<sub>2</sub>O</td>
</tr>
<tr>
<td>• PEEP: 5 cmH<sub>2</sub>O & Insp. time 0.3 – 0.35 s</td>
<td>• PEEP: 5 cmH<sub>2</sub>O & Insp. time 0.35 – 0.4 s</td>
</tr>
<tr>
<td>• Trigger sensitivity : 1</td>
<td>• Trigger sensitivity : 1</td>
</tr>
<tr>
<td>• Back up rate: 40 - 45 breaths /min</td>
<td>• Back up rate: 40 - 45 breaths /min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Once on VG</th>
<th>Blood gas 30 - 60 min after set-up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Blood gas 30 - 60 min after set-up.</td>
<td>Aim for a PIP limit of at least 5 cm H<sub>2</sub>O above the working pressure.</td>
</tr>
<tr>
<td>• Aim for a PIP limit of at least 5 cm H<sub>2</sub>O</td>
<td>If ETT leak persistently > 50%, VG is ineffective; consider upsizing the ETT</td>
</tr>
<tr>
<td>above the working pressure.</td>
<td>Adjust tidal volume in increments of 0.5 ml/kg</td>
</tr>
<tr>
<td>• If ETT leak persistently > 50%, VG is ineffective;</td>
<td>Max tidal volume: 7 ml/kg</td>
</tr>
<tr>
<td>consider upsizing the ETT</td>
<td>Min tidal volume : 4 ml/kg</td>
</tr>
<tr>
<td>• Adjust tidal volume in increments of 0.5 ml/kg</td>
<td>If required PIP consistently > 30 cmH<sub>2</sub>O on max TV in the absence of significant ETT leak, consider HFOV</td>
</tr>
<tr>
<td>• Max tidal volume: 7 ml/kg</td>
<td>• Blood gas 30 - 60 min after set-up.</td>
</tr>
<tr>
<td>• Min tidal volume : 4 ml/kg</td>
<td>Aim for a PIP limit of at least 5 cm H<sub>2</sub>O above the working pressure.</td>
</tr>
<tr>
<td>• If required PIP consistently > 30 cmH<sub>2</sub>O on max TV in the absence of significant ETT leak, consider HFOV</td>
<td>Adjust tidal volume in increments of 0.5 ml/kg</td>
</tr>
<tr>
<td></td>
<td>Max tidal volume: 7 ml/kg</td>
</tr>
<tr>
<td></td>
<td>Min tidal volume : 4 ml/kg</td>
</tr>
<tr>
<td></td>
<td>If required PIP consistently > 35 cmH<sub>2</sub>O on max TV in the absence of significant ETT leak, consider HFOV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weaning & Extubation</th>
<th>• PIP auto-weans on VG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PIP auto-weans on VG.</td>
<td>• PIP auto-weans on VG.</td>
</tr>
<tr>
<td>• Wean tidal volume to 4 ml/kg</td>
<td>• Wean tidal volume to 4 ml/kg</td>
</tr>
<tr>
<td>• Wean BUR to 30 bpm (on SIMV+VG).</td>
<td>• Wean BUR to 30 bpm (on SIMV+VG).</td>
</tr>
<tr>
<td>• Ensure breathing well above the back-up rate (BUR) and triggering breaths.</td>
<td>Ensure breathing well above the back-up rate (BUR) and triggering breaths.</td>
</tr>
<tr>
<td>• Ensure PIP needed is consistently low (≤ 12 cm H<sub>2</sub>O) and MAP ≤ 8 cmH<sub>2</sub>O.</td>
<td>Ensure PIP needed is consistently low (≤ 15 cm H<sub>2</sub>O) and MAP ≤ 8 cmH<sub>2</sub>O.</td>
</tr>
<tr>
<td>• Ensure breathing well above set back-up rate and triggering all breaths.</td>
<td>Extubate when off sedation, on TV of 4 - 5 ml/kg, needing low pressures (above criteria), BUR of 30 bpm, FiO<sub>2</sub> < 0.4 and good gases (except CLD infants</td>
</tr>
<tr>
<td>• Extubate when off sedation, on TV of 4 - 5 ml/kg,</td>
<td>• Extubate when off sedation, on TV of 4 - 5 ml/kg,</td>
</tr>
<tr>
<td>needing low pressures (above criteria), triggering all</td>
<td>needing low pressures (above criteria), BUR of 30 bpm,</td>
</tr>
<tr>
<td>breaths, FiO<sub>2</sub> < 0.4 and good gases</td>
<td>FiO<sub>2</sub> < 0.4 and good gases (except CLD infants)</td>
</tr>
<tr>
<td>(except CLD infants)</td>
<td></td>
</tr>
</tbody>
</table>

Trouble Shooting on VG

- **Low tidal volume alarm**: Check PIP limit, large ETT leak (> 50%), ETT displacement, ETT obstruction, chest splinting, air leaks, water in circuit and ventilator dysfunction.
- **High FiO₂ and low pCO₂**: Adjust periodically to keep the limit close to the working pressure (+ 5 cm H₂O).
- **PIP limit**: Adjust periodically to keep the limit close to the working pressure (+ 5 cm H₂O).
- **Back-up rate**: If breathing below the set BUR, decrease the BUR to help them trigger.
- **Infants with CLD**: May need up to 7 - 8 ml/kg TV because of increased anatomical dead space secondary to tracheal dilatation and increased physiologic dead space. Expect higher PIP on extubation.
- **Auto-triggering on SIPPV**: If the infant’s RR is abnormally high, consider increasing trigger settings ONCE you have ruled out water in circuit, ETT leak and air leaks.
<table>
<thead>
<tr>
<th>Category</th>
<th>Initial Mode</th>
<th>Escalation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm infants < 32(^{+\text{6}}) wks (incl. infants with heart defects, sepsis and other medical problems)</td>
<td>SIPPV + VG</td>
<td>HFOV (if on TV of 7 ml/kg and persistently needing high pressures > 30 cmH(_2)O)</td>
<td>SIPPV + VG in comparison to SIMV + VG has shown to decrease the WOB, improve oxygenation and stabilize pCO(_2) levels in preterm infants</td>
</tr>
<tr>
<td>Preterm infants > 32(^{+\text{1}}) wks (incl. infants with heart defects, sepsis, other medical problems and HIE)</td>
<td>SIMV + VG</td>
<td>Trial of SIPPV + VG</td>
<td>These infants do not need support with each breath + tend to get over-ventilated quickly, hence start with SIMV + VG and escalate if needed</td>
</tr>
<tr>
<td>Surgical infants (incl. CDH)</td>
<td>SIMV + VG</td>
<td>Trial of SIPPV + VG</td>
<td>Infants with severe meconium aspiration syndrome and PPHN may need quick escalation to HFOV if needing higher pressures on initial setup.</td>
</tr>
<tr>
<td>Aspiration Syndrome > 34(^{+\text{6}}) wks (Meconium, Blood, Mucus, Reflux etc.)</td>
<td>SIMV + VG</td>
<td>Trial of SIPPV + VG</td>
<td>These infants are often difficult to ventilate. No particular strategy has been shown to be ideal.</td>
</tr>
<tr>
<td>Chronic Lung Disease (Preterm infants > 28 days of life needing respiratory support or oxygen)</td>
<td>SIMV + VG (Max 8ml/kg)</td>
<td>SIMV ± PSV ± VG (if on TV of 8 ml/kg and persistently needing high pressures > 35 cmH(_2)O)</td>
<td>Pulmonary haemorrhage could range from blood tinged secretions to massive life threatening bleeding from ETT. For small bleeds, increase PEEP and consider increasing the TV (on SIPPV + VG), HFOV, if needing high pressures or in severe bleeds.</td>
</tr>
<tr>
<td>Pulmonary Haemorrhage (Mild – Moderate)</td>
<td>SIPPV + VG (High PEEP)</td>
<td>HFOV (if on TV of 7 ml/kg and persistently needing high pressures > 35 cmH(_2)O)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Haemorrhage (Severe / Life Threatening)</td>
<td>HFOV</td>
<td>HFOV</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Troubleshooting</td>
<td>What to do?</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Low tidal volume alarm</td>
<td>Endotracheal tube</td>
<td>• Check infant’s chest movement and air entry</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>a. Displaced?</td>
<td>• If “resistance” displayed on the ventilator higher than baseline, obstruction likely (look at the trend rather than an absolute value)</td>
<td></td>
</tr>
<tr>
<td>Working pressure constantly very close to Pmax (PIP limit)</td>
<td>b. Obstructed or blocked?</td>
<td>• Rule out pneumothorax</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>c. Pneumothorax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low minute volume alarm</td>
<td>Is there water in the ventilator circuit?</td>
<td>• Empty water from the vent circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is there any leak/disconnection in the ventilator circuit?</td>
<td>• Fix any leak/disconnection in the circuit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is there a persistent significant endotracheal tube (ETT) leak of > 50%?</td>
<td>• Upsize ETT if gases sub-optimal, needing higher pressures and high O₂ requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hold if planning to extubate and gases normal, ventilation acceptable and no alarms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change to pressure ventilation if constantly alarming and you plan to extubate soon.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is your PIP limit very close to the working pressure?</td>
<td>• Ensure enough room (at least 5 cmH₂O) between your working pressure and the PIP limit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consider increasing the Pmax once ETT obstruction, ETT leak and ventilator issues ruled out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can the high pressure requirements or inability to achieve set TV be explained by the lung disease?</td>
<td>• Address the underlying condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consider surfactant for preterm infants with moderate-severe RDS with stiff lungs needing high working pressures to achieve the set tidal volumes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the infant splinting the chest? (Commonly seen in infants with chronic lung disease)</td>
<td>• Consider increasing the Pmax, if safe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consider increasing the tidal volume (up to a max of 8 ml/kg)</td>
<td></td>
</tr>
<tr>
<td>Infant not synchronous with the ventilator</td>
<td>Is your set VT high enough to support the infant’s spontaneous breathing?</td>
<td>• Increase set VT until the respiratory pattern is less laboured and blood gases normalized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Infants with set VT lower than the spontaneous VT display vigorous spontaneous efforts, gasping, laboured breathing and an elevated PaCO₂ just to get an adequate size breath.)</td>
<td>• Extubate if appropriate</td>
<td></td>
</tr>
<tr>
<td>High minute volume alarm</td>
<td>Lung compliance improved?</td>
<td>• Consider increasing VT</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>(If set VT is too low, you are not providing adequate alveolar volume and the infant has to breathe very quickly)</td>
<td>• Exclude ETT leaks, ETT secretions, air leaks and water in the ventilator circuit</td>
<td></td>
</tr>
<tr>
<td>Auto-triggering</td>
<td>Is your infant’s respiratory rate abnormally high?</td>
<td>• Baby ready for extubation?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Once above ruled out, consider increasing the trigger sensitivity</td>
<td></td>
</tr>
</tbody>
</table>
High Frequency Oscillatory Ventilation

BAPM guidelines state that there is insufficient evidence to prove that HFOV is better than conventional ventilation, for either rescue or primary use in the preterm infant. More recently a randomised trial of early use of HFOV in preterm infants (UKOS 2002) showed no advantage over conventional ventilation.

HFOV uses a constant mean airway distending pressure with a high frequency oscillating pressure superimposed upon it. The theoretical advantage of this mode of ventilation is that inspiratory shearing forces are reduced thus reducing barotrauma and perhaps subsequent chronic lung disease (Cochrane review 2002).

Principles of HFOV

HFOV has been described as ‘CPAP with wobble’

The CPAP is sustained inflation and recruitment of lung volume by the application of a distending mean airway pressure (MAP) to achieve oxygenation.

The ‘wobble’ is an oscillating pressure waveform on the MAP at an adjustable frequency (Hz) and an adjustable amplitude (ΔP). In HFOV the rate of excretion of CO₂ is controlled by making changes to the ?P and frequency.

![Graph showing pressure (cmH₂O) and time (s) with MAP and CO₂ changes](image)

Indications for HFOV

Treatment of preterm infants with Surfactant Deficient Disease
Primary therapy (discuss with consultant first)
Rescue therapy: Failure of conventional ventilation
Meconium aspiration
Persistent pulmonary hypertension of the newborn
Cystic lung disease/pneumothorax
CDH / Hypoplastic lungs
Hydrops
Pneumonia

Sensormedics 3100A Set Up:

Circuit Calibration and Ventilator Test sequence:

This procedure should be carried out each time a new circuit is connected. The aim is to calibrate the circuit to the machine and test the capability of the oscillator thus identifying problems before attaching the patient to the ventilator.
1. Connect air and oxygen sources and mains power.

2. Ensure stopper in ET connector.

3. Switch on using mains on/off power switch.

4. Depress and hold Reset button to pressurise system.

5. Set the following parameters:
 - Bias Flow: 20 lpm
 - Pressure Limit and Pressure Adjust controls to maximum
 - Frequency: 15 Hz
 - % inspiratory time: 33%

6. Mean Pressure Display should read 39-43 cmH\textsubscript{2}O. If needed adjust patient circuit calibration screw on right side of ventilator.

7. Set MAP to 19-21 cmH\textsubscript{2}O using the mean pressure adjust control. Check the bias flow is still exactly 20 lpm.

8. Press start button.

9. Unlock the Power control, set ?P to 6 (in window), relock

10. Centre piston

11. The following readings should now be displayed:
 - ?P = 56-75 cmH\textsubscript{2}O
 - MAP = 17-23 cmH\textsubscript{2}O

 If these readings are not achieved, repeat steps 1-10 then call for technician support. If readings achieved reduce ?P to reduce the noise for the next steps.

Attaching the patient:

The following set up instructions are designed to be used following the Circuit Calibration and Ventilator Test sequence, that is immediately prior to patient connection. The aim is to ensure settings are within clinical and safety guidelines.

1. Plug in humidifier and oscillator to electricity and gas supply. Fill humidifier and switch on.

2. Check the following parameters are set correctly:
 - Bias Flow 20 lpm
 - Frequency 10Hz
 - % inspiratory time 33%
 - Select FiO\textsubscript{2}

3. Decide starting MAP. This will depend whether treatment is rescue or elective.

 Rescue: MAP on Conventional Mechanical Ventilation + 1-2 cm H\textsubscript{2}O

 Elective: 10 cm H\textsubscript{2}O for infants <1000g, 10-12 cm H\textsubscript{2}O for infants >1000g

4. Set desired value for MAP using the Pressure Adjust control
 - Set Max Pressure alarm to MAP + 2 cm H\textsubscript{2}O
Set Min Pressure alarm to MAP – 2cm H$_2$O

5. Adjust the Pressure Limit control so that it just allows the desired MAP to be delivered. The MAP cannot now be raised inadvertently above this level by the Pressure Adjust control or by circuit occlusion. The Pressure Limit control will need turning up in tandem with the Pressure Adjust control to achieve a higher MAP. Likewise as the MAP is reduced during weaning the Pressure Limit control should be turned down to maintain limits.

6. Unlock the Power control, set $?P$ to 20 and relock.

7. Adjust the ventilator tubing so that the humidity drains back into the oscillator.

8. Centre piston and readjust MAP with Mean Pressure Adjust control if required

9. Connect infant

10. Adjust $?P$ until the chest vibrates and readjust MAP and centre piston as required.

Optimising lung function with MAP:

Oxygenation of the blood depends on gaining adequate lung volume, matching of ventilation and pulmonary blood flow and FiO$_2$.

Lung volume is regulated by MAP. As MAP is increased lung volume rises, pulmonary blood flow increases, shunt decreases, and FiO$_2$ can be reduced. It is useful to see HFOV as if you are taking the baby’s lungs around a pressure volume hysteresis loop.

The art of HFOV is to achieve and maintain optimal lung inflation (aiming for most of the alveoli on the expiratory limb of the pressure volume loop). Gradual increments in MAP causing alveolar recruitment and thus optimal oxygenation can be achieved without over-distension of the lungs.

A **Under-inflation:**
High pulmonary vascular resistance (PVR)
- Relatively large changes in pressure produce small changes in volume.
- High oxygen requirement
- Poor chest wall movement
 → Increase MAP

B **Optimal inflation:**
Low PVR
- Small changes in pressure give larger changes in volume
- Low oxygen requirement
- Good chest wall movement
C. Over-inflation:
- Systemic circulation compromised (low MABP, narrow heart on CXR)
- Relatively large changes in pressure produce small changes in volume.
- Oxygen requirement initially low but will eventually rise
- Poor chest wall movement

Wean MAP rapidly to B to prevent lung damage. Over-distension may be difficult to pick-up clinically. CXR still remains the best diagnostic tool.

D. Optimal weaning:
The goal should be to move from B to D avoiding C as shown by the arrow. Having achieved optimal lung inflation by slowly reducing MAP it should be possible to maintain the same lung inflation and ventilation at a lower MAP. If MAP is lowered too far oxygen requirements will start to rise.

Initial management using HFOV:

Preparation:

Check there is no significant leak around the ET tube, you may need a new one.
- Organise appropriate monitoring (see below)
- Blood pressure and perfusion should be optimised; any volume replacement contemplated should be completed and inotropes commenced if necessary.
- Muscle relaxants are not indicated in preterm infants unless already in use. Term babies may not tolerate HFOV without paralysis.
- Sedation with opiates is indicated in line with UNIT guidelines.

Infant with compliant lungs:

VLBW babies who have minimal lung disease and / or have received early surfactant.

Bias flow 20 lpm
Frequency 10Hz
% inspiratory time 33%
FiO2 0.3
MAP 6-8 cmH2O for babies <1000g, 8-10 cmH2O for babies =1000g
ΔP 10 for <1000g, 15 ?1000g

Adjust MAP to maintain a PaO\textsubscript{2} of 7-10 kPa and ?P to maintain a PaCO\textsubscript{2} of 5-6 kPa (aiming for pH of 7.30-7.40). See hysteresis loop and below for guidance on gaining optimal lung volume and controlling PaCO\textsubscript{2}. Although oxygenation and CO\textsubscript{2} control are best considered separately, adjusting the ventilator for one parameter will alter other settings and so after making a change always check the other settings.

Infant with Hyaline membrane Disease:

Oxygenation:

1. Commence with MAP 10-12 cm H\textsubscript{2}O or MAP on CMV + 1-2 cm H\textsubscript{2}O
2. Aim for a ‘high volume’ strategy by increasing the MAP in 1cm H\textsubscript{2}O steps every 10-15 minutes reducing FiO\textsubscript{2} until:
 a. PaO\textsubscript{2} ceases to rise or begins to fall (ie FiO\textsubscript{2} can no longer be reduced)
 b. PaCO\textsubscript{2} begins to rise
CVP rises
Cardiac output (MABP) falls.
It is very unusual to need a MAP > 20 cm H₂O

1. Aim to reduce the FiO₂ to 0.3 – 0.4 and check on x-ray that there is a radiolucent radiograph, with 8-9 posterior ribs above the diaphragm. Over-inflation is indicated with 10 or more posterior ribs above the diaphragm on CXR, by bulging of the pleura at the intercostal space and a compressed cardiac silhouette.

2. If you think you are pressing too hard reduce the MAP by 2-3 cm H₂O and watch the oxygen saturation and TcPO₂. If they rise you are pressing too hard and if they fall you probably have a little way to go.

3. Once an adequate high lung volume has been achieved it will be possible to drop the MAP a little without loss of volume and rise in FiO₂.

CO₂ control:

1. To ensure adequate CO₂ excretion the ?P must be sufficient to ensure that the chest vibrates on palpation.

2. Adjust the ?P to obtain a PaCO₂ of 5 – 6 kPa.

3. As for conventional ventilation the rate of excretion of CO₂ (VCO₂) is proportional to the frequency. You would expect an increase in frequency to reduce the PaCO₂. However it causes a reduction in ?P paradoxically increasing the PaCO₂. It is usually unnecessary to change the frequency from 10 Hz. Nevertheless if the PaCO₂ is too low and ?P is minimal you can raise the PaCO₂ by increasing the frequency from 10Hz to 15Hz.

4. If with good chest vibrations and lung volume the PaCO₂ is still too high, reducing the frequency may increase the VCO₂ and reduce the PaCO₂.
Administration of Surfactant:

1. Surfactant can be administered in the usual way by bolus.
2. Disconnection may result in loss of lung volume, decreased chest vibration and an initial rise in \(\text{FiO}_2 \).
3. Therefore increase \(?P\) till chest vibrates at the same MAP. Wait 10 minutes or until the \(\text{PaO}_2 \) rises and the \(\text{FiO}_2 \) can be reduced.
4. Decrease MAP in steps as the surfactant works and the \(\text{FiO}_2 \) rises.
5. Gradually increase the MAP as the surfactant effect wears off.
6. Often only one dose is required.

Weaning:

It is valuable to get the lung onto the descending limb of the pressure volume curve. When this is done the MAP can be reduced in steps of 0.5 - 1 cm H\(_2\)O provided the \(\text{FiO}_2 \) remains between 0.3 and 0.4. There is then little change in lung volume or fall in \(\text{PaO}_2 \).

WHEN REDUCING THE MEAN AIRWAY PRESSURE MAKE SURE YOU REDUCE THE Max Pressure Airway ALARM. IF YOU DON'T, WHEN MAP GETS TO 20% OF Max Pressure Alarm THE RED BALLOON DUMPS AND YOU CANNOT START THE MACHINE UNTIL YOU HAVE LOWERED THE Max Pressure Alarm.

The \(?P\) can be reduced as necessary to maintain a normal \(\text{PaCO}_2 \).

If you wean too fast the lungs collapse and the \(\text{FiO}_2 \) goes up and you end up on the bottom end of the ascending limb of the pressure volume loop. You may have to raise the MAP to quite high levels to get back onto the descending limb.
If you wean too slowly, as the lung compliance increases, over distension and compression of the circulation may result.

Extubation:

When MAP ≤ 6-8cm H₂O, FiO₂ <0.3 and ?P low with good chest wall movement and breath sounds on spontaneous breathing. Extubate onto flow driver or into headbox or nasal cannula oxygen. CMV may be a valuable step if there are particular problems with secretions requiring vigorous physiotherapy and suction.

Assessing failure of HFOV:

Do not be too quick to assume a trial of HFOV has failed. Before changing to conventional ventilation request an urgent CXR to assess the state of inflation and assess the circulation carefully. A short period of careful bagging may be of value in assessing the lung compliance and help decide the CMV settings after a failed trial of HFOV.

Infant with PIE/Pneumothorax:

Adopt a ‘low volume’ strategy.
Reduce MAP to 1-2 cm H₂O <CMV MAP or reduce in 1 cm H₂O steps.
Tolerate a higher FiO₂
Reduce ?P to a minimum to maintain a PaCO₂ of 6-8 kPa and pH > 7.25.
It may be useful to try a low frequency (eg 8Hz)
For unilateral disease try rotating the bevel of the ETT to the normal side, and lying on the affected side.

Infant with meconium aspiration syndrome:

MAP equal to that on CMV.
Frequency 10Hz
% inspiratory time 33
FiO₂ maximum before putting up MAP
Then increase MAP by 1cm H₂O at intervals of 30-60 minutes.

Adjust ?P to maintain a paCO₂ of 4.5-5.5 kPa.

Watch out for air trapping and pneumothorax

Infant with Hypoplastic Lungs:

Frequency of 10Hz
% inspiratory time 33
MAP 10-12 cm H₂O raise slowly
Use CXR to ensure that lungs are not over filled.
?P 25-45
Wean slowly 0.5cm-1.0cm H₂O increments.

The above recommendations are according to lung disease and are based on manufacturer's advise and strategies developed at Wilford Hall Medical Center, Texas. See also educational material available on the website www.sesormedics.com.

Monitoring HFOV:
Good monitoring is essential to prevent adverse side-effects possible from rapid and excessive fluctuations in pCO$_2$, pO$_2$ and lung volume that may occur with careless use of HFOV.

Arterial blood gases: Every 15 mins until stable, every hour for the first 4 hours
Then 4-6 hourly or within 30 mins of a major setting change.
Intra-arterial Neotrend monitoring is very useful with HFOV.
Once a stable state is reached and good non-invasive monitoring established frequency of blood gas analysis can be safely reduced.

Non-invasive: O$_2$ and CO$_2$ should be continuously monitored transcutaneously. Once the baby is stable and improving, the non-invasive monitoring can be used to wean ventilation in conjunction with intermittent arterial blood gases.

Chest X-rays: Approximately one hour after starting HFOV to assess lung function.
Diaphragm should be at the level of 8 to 9 posterior ribs. Repeat CXR daily for first 3 days or if clinical deterioration

Blood pressure: Intra-arterial access should be obtained for continuous monitoring. If hypotensive treat with volume expansion and or inotropes as appropriate.
Consider decreased venous return resulting from over-expansion as a cause of hypotension. In this case a reduction in MAP will help.

Echocardiography For diagnosis and management of PDA and assessment of cardiac function.

Trouble Shooting:

1. **PaO$_2$ falling/FiO$_2$ increasing:**
 a Check that lung volume is not too high or too low.
 b If uncertain try reducing the MAP by 2-3cn H$_2$O and watch the TcPO$_2$ and O$_2$ saturation. If they rise you are pressing too hard and if they fall you probably have a little way to go so increase MAP stepwise.
 c If in doubt take a CXR and adjust the MAP appropriately.
 d ? pneumothorax (may not be as clinically obvious as on IPPV)

1. Cannot get MAP over a certain level:
 Adjust Mean Pressure Limit

2. High PaCO$_2$ (See flow diagram above)

3. **PaCO$_2$ falling too low**
 a Reduce ?P
 b Increase frequency to 15Hz (but not usual practice)

Alteration of Ventilator Settings

1. **INCREASING PIP**
 - should increase PaO$_2$ and decrease PaCO$_2$ by increasing tidal volume or minute ventilation.
 - allows maximal dilatation of patent alveoli.
 - increases opening of alveoli with high critical opening pressure.
 - probably increases risk of barotrauma.

2. **INCREASING PEEP OR CPAP**
 - should increase PaO$_2$ by holding open alveoli and terminal airways by lowering the ‘closing volume’.
 - reduces tidal volume and minute ventilation unless significant atelectasis is overcome.
 - significantly increases mean airway pressure.
 - may lead to CO$_2$ retention if too high.
3. INCREASING VENTILATOR RATE
- should decrease PaCO$_2$ by increasing minute ventilation.
- may decrease PaO$_2$.
- may cause air trapping if insufficient time for expiration.

4. DECREASING VENTILATOR RATE
- usually increases PaCO$_2$.
- may increase PaO$_2$ if PIP also increased.
- may increase PaO$_2$ if I:E ratio increased.

5. INCREASING INSPIRATORY TIME
- may increase PaO$_2$ and decrease PaCO$_2$ by increasing mean airway pressure.
- allows expansion of atelectatic alveoli at lower PIP.
- may cause ‘inadvertent PEEP’ (gas trapping) if used inappropriately.
- may use reduction of pulmonary blood flow.