Noradrenaline Infusion Rates for Adult Critical Care 4mg in 50mL

Using a 4mg in 50 mL (80 micrograms in 1 mL) noradrenaline syringe:

<table>
<thead>
<tr>
<th>Dosage (microgram/kg/minute)</th>
<th>Ideal body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40kg</td>
</tr>
<tr>
<td>0.01</td>
<td>0.3 mL/hour</td>
</tr>
<tr>
<td>0.1</td>
<td>3 mL/hour</td>
</tr>
<tr>
<td>0.2</td>
<td>6 mL/hour</td>
</tr>
<tr>
<td>0.5</td>
<td>*15 mL/hour</td>
</tr>
</tbody>
</table>

*consider using a more concentrated solution

Dosing thresholds

- **Low** = up to 0.2 micrograms/kg/min
- **Moderate** = 0.2 - 0.5 micrograms/kg/min > 0.2 mcg/kg/min Consider PiCCO
 - Consider steroids
 - Consider echocardiogram - if clinician concern
- **High** more than 0.5 micrograms/kg/min > 1 mcg/kg/min Consider vasopressin

Alert a senior doctor or the nurse in charge:
- When transitioning from low to moderate, or moderate to high dose.
- If the noradrenaline dose doubles over a six hour period
Noradrenaline Infusion Rates for Adult Critical Care 8mg in 50mL

Using an 8mg in 50 mL (160 micrograms in 1 mL) noradrenaline syringe:

<table>
<thead>
<tr>
<th>Dosage (microgram/kg/minute)</th>
<th>Ideal body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40kg</td>
</tr>
<tr>
<td>0.01</td>
<td>‡ 0.2 mL/hour</td>
</tr>
<tr>
<td>0.1</td>
<td>1.5 mL/hour</td>
</tr>
<tr>
<td>0.2</td>
<td>3 mL/hour</td>
</tr>
<tr>
<td>0.5</td>
<td>7.5 mL/hour</td>
</tr>
</tbody>
</table>

*consider using a more concentrated solution
‡ consider using a less concentrated solution

Dosing thresholds

Low = up to 0.2 micrograms/kg/min

Moderate = 0.2 - 0.5 micrograms/kg/min > 0.2 mcg/kg/min Consider PiCCO

Consider steroids
Consider echocardiogram - if clinician concern

High more than 0.5 micrograms/kg/min > 1 mcg/kg/min Consider vasopressin

Alert a senior doctor or the nurse in charge:

• When transitioning from low to moderate, or moderate to high dose.
• If the noradrenaline dose doubles over a six hour period
Noradrenaline Infusion Rates for Adult Critical Care 16mg in 50mL

Using a 16mg in 50 mL (320 micrograms in 1 mL) noradrenaline syringe:

<table>
<thead>
<tr>
<th>Dosage (microgram/kg/minute)</th>
<th>Ideal body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40kg</td>
</tr>
<tr>
<td>0.01</td>
<td>‡0.1 mL/hour</td>
</tr>
<tr>
<td>0.1</td>
<td>0.8 mL/hour</td>
</tr>
<tr>
<td>0.2</td>
<td>1.5 mL/hour</td>
</tr>
<tr>
<td>0.5</td>
<td>3.8 mL/hour</td>
</tr>
<tr>
<td>1</td>
<td>7.5 mL/hour</td>
</tr>
</tbody>
</table>

*consider using a more concentrated solution
‡ consider using a less concentrated solution

Dosing thresholds

Low = up to 0.2 micrograms/kg/min
Moderate = 0.2 - 0.5 micrograms/kg/min > 0.2 mcg/kg/min Consider PiCCO
Consider steroids
Consider echocardiogram - if clinician concern
High more than 0.5 micrograms/kg/min > 1 mcg/kg/min Consider vasopressin

Alert a senior doctor or the nurse in charge:
• When transitioning from low to moderate, or moderate to high dose.
• If the noradrenaline dose doubles over a six hour period
Noradrenaline Calculations for Adult Critical Care

Ideal body weight: If the patient’s height is not known, measure ulna length and enter into MetaVision or use BAPEN MUST tool to estimate height

ALWAYS set the volume to be infused alarm on the pump as an alert.

Calculating the infusion rate when you know the dose:

\[
\text{Noradrenaline infusion rate (mL/hour) = } \frac{\text{Dose (micrograms/kg/minute)}}{\text{Concentration (micrograms/mL)}} \times \frac{\text{Ideal body weight (kg)}}{60 \text{ (minutes)}}
\]

For example: to calculate the infusion rate to administer 0.1 micrograms/kg/minute of noradrenaline to a 70kg patient using a solution of noradrenaline 4mg in 50 mL glucose (80 micrograms in 1 mL):

\[
\begin{align*}
\text{Noradrenaline infusion rate (mL/hour)} &= \frac{0.1 \text{ micrograms/kg/minute}}{80 \text{ micrograms/mL}} \times \frac{70 \text{ kg}}{60 \text{ minutes}} \\
&= 5.25 \text{ mL/hour}
\end{align*}
\]

Most of our pumps are only accurate to 0.1mL/hour, if the rate includes a 0.05 figure, round the rate UP to the next decimal place when setting the infusion pump e.g. round 5.25 mL/hour up to 5.3mL/hour

Calculating the dose when you know the infusion rate:

\[
\text{Noradrenaline dose (micrograms/kg/min) = Infusion Rate (mL/hr) x Concentration (micrograms/mL)} \times \frac{\text{Ideal body weight (kg)}}{60 \text{ (minutes)}}
\]

For example: to calculate the dose of noradrenaline (in micrograms/kg/min) being administered to an 65kg patient using a solution of 8mg noradrenaline in 50 ml glucose (160 micrograms in 1ml) where the pump is running at 8.2ml/hr:

\[
\begin{align*}
\text{Noradrenaline dose (micrograms/kg/min)} &= 8.2 \text{ mL/hr} \times 160 \text{ micrograms/mL} \times \frac{65 \text{ kg}}{3,900 \text{ minutes}} \\
&= 1.312 \text{ micrograms/kg/min}
\end{align*}
\]